BAMS

Article

Visual Communication of Probabilistic

Information to Enhance Decision Support

Anne Heggli®, Benjamin Hatchett, Zach Tolby, Kathryn Lambrecht,
Meghan Collins, Lynda Olman, and Matthew Jeglum

KEYWORDS: ABSTRACT: When hazardous weather is forecast, communicating probabilistic information (PI)
North America; can improve trust, confidence, and understanding of forecast information, resulting in improved
Probability decision-making by emergency managers and public audiences. With probabilistic forecast tools
forecasts/models/ modernizing forecast operations, the National Weather Service is calling on regional offices to
distribution; increase the use of Pl. However, communicating Pl can be challenging since the information is
Communications/ intrinsically more complex than single-value deterministic forecasts that do not include a mea-
decision making; sure of uncertainty. We suggest that effective Pl visualization not only includes the PI graphic
Decision making; but also communicates potential impacts and issues preventative guidance to limit exposure to
Decision support weather-related hazards. Decision support tools like Pl benefit from, if not require, effective vi-

sual communication that capitalizes on the efficiency of the visual system to extract information,
decrease the time to interpret information, and increase the understanding of uncertainties. Fur-
thermore, Pl visuals need to be accessible to disabled and neurodivergent audiences. To enhance
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to identify guiding principles for effective visual communication and provide a one-page printout
quick guide. To showcase how forecasters can incorporate guiding principles in the local context,
we provide examples built from readily usable templates to demonstrate how probabilistic forecast
information extracted from tools like the National Blend of Models can be used to enhance the
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onsistent with the World Meteorological Organization’s (WMO) recommendations

(WMO 2021), the U.S. National Weather Service (NWS) and its parent organization,

the National Oceanic and Atmospheric Administration (NOAA), are transitioning
toward probabilistic forecasts as a way to modernize forecast operations to maximize
the decision-making value of Impact-Based Decision Support Systems (IDSS) (National
Weather Service 2019a; National Weather Service 2022b; Uccellini and Ten Hoeve 2019).
However, effectively communicating probabilistic information (PI) visually to emergency
managers and general audiences alike remains a challenge (Grounds et al. 2017; Joslyn
and LeClerc 2013; Juanchich and Sirota 2018). In a review of 327 studies, Ripberger et al.
(2022) established the numerous benefits associated with PI but concluded these benefits
hinge on the visuals being well designed (Franconeri et al. 2021; Padilla et al. 2021).
Creating effective PI visualizations requires an interdisciplinary approach that respects the
importance of scientific accuracy and leverages visual communication practices that have
been proven to be effective.

Visual communication scholars have established that visualization is the best approach
to communicate complex information like PI (Ash et al. 2014; Carr et al. 2016, 2021; Dallo
etal. 2020; Franconeri et al. 2021; Kuller et al. 2021; Lipkus and Hollands 1999; Murchie and
Diomede 2020). Visuals capitalize on the brain’s visual system to extract complex information
rapidly and accurately (Essen et al. 1992; Zacks and Franconeri 2020). At the same time, visu-
als such as graphs, charts, and maps enhance the comprehension of complex information by
breaking down the information into smaller, more meaningful units (Malamed 2015). Visuals
are essential aids to communicate PI to both core partners (e.g., emergency managers, school
districts, government agencies) and public audiences.

With more accessible probabilistic forecast information, the NWS is transitioning toward
improved PI visualizations to maximize the decision-making value in order to build a
Weather-Ready Nation (Harrison et al. 2022; National Weather Service 2022b; Novak et al.
2023; Schumacher et al. 2021, 2022; Tripp et al. 2023). We define PI and discuss its relation-
ship to impact-based decision support in the sidebar “Probabilistic information to advance
Impact-Based Decision Support Systems.” However, there remains a gap in the application
of best practices from visual communication research to PI forecasting in the NWS. Tools
like the public-facing experimental 1D Viewer or internal Whole Story Uncertainty and
Probabilities (WSUP) Viewer and Probabilistic Graphics Generator are designed to visually
convey probabilistic forecasts and thereby increase the capacity for agencies to disseminate
PI when appropriate. However, these tools still require effective visual communication
strategies to help improve the user’s understanding of the forecast.

To support ongoing efforts of the NWS to communicate more PI to core partners
and public audiences alike, we synthesize guidelines for visualizing PI from literature
aimed specifically at visual communication for weather-related hazards and effec-
tive graphic design conventions. We summarize the findings in a one-page printout

AMERICAN METEOROLOE#S@Q%EQ%IE/EE by Desert Rgséylr%h Institute | Unauthentic%lFtBEEMng%gooazt%d F1E5§é‘/zs 10:04 PM UTC



Guidelines for Visual Communication of
Probabilistic Information (PI)

ACCESSIBILITY Follow 508 Compliance Guidelines' but use this as first step to improve accessibility

Potential Impacts

LAYOUT Use the template* to ensure content
uniformity. New templates should
respect familiar design conventions (e.g.
title at the top and supplemental
information at the bottom). Organize
thoughts with color blocking using a grid
space approach like the example
provided. Do not overcrowd the visual.

CONTENT Title: Explain the weather
Subtitle: Set up Probabilistic Information (Pl) visualization
Pl Visualization: Insert the PI visualization

Supplemental Info: Explain the graphic and/or direct users to information about
the source of the data or more specific forecast information.
Keep it short!

Impact Statement: When — Communicate the timing
Potential Impacts — Briefly describe the potential impacts
What To Do — Provide preventative guidance or action items
aimed at reducing exposure to the potential impacts

COLOR 6 Use a single hue that varies in lightness to gglfr ;ﬁ% %rl‘ia:dn g,';z
communicate uncertainty (darker = more certain)
Q Check colors with an online colorblindness
simulator? 6
© Do not use red-green or I I I I
orange-green color maps
© Do not use rainbow color maps
© Do not use colors that conflict with Y
risk or hazard color scales
davidmathlogic.com/colorblind
FONT Arial, Univers, Helvetica

Title 32 pt, subtitle 18 pt, body 16 pt, minimum size 14 pt
Use boldface to draw attention and avoid italics

EMBELLISHMENT Communicate - don’t decorate! Icons and photos should directly aid the message.

0150l Download the template: bit.ly/visualize_PI 1. section508.gov
[5F 22¥Read the research: doi.org/10.1175/BAMS-D-22-0220.1 2. color-blindness.com/coblis-color-blindness-simulator

Fig. 1. A one-page printout of key visual communication guiding principles intended for forecasters
tasked with disseminating Pl visualizations.

(Fig. 1; https://doi.org/10.5281/zenodo.7600486). We then apply these guidelines to cre-
ate “plug-and-play” templates (Heggli et al. 2023) to develop PI graphics in Excel and
“plug” them into a PowerPoint template to “play” with colors and update text and icons
accordingly. The templates incorporate the guiding principles identified in the literature as
a way to demonstrate how PI extracted from probabilistic forecast tools can be visualized to
support decision-making. To incorporate these methods into practice, we provide examples
for primary weather conditions that commonly pose widespread and localized hazards
in the western United States: snowfall, wind, temperature, and thunderstorms developed
in collaboration with the NWS Office in Reno, Nevada. These tools are designed with an
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emphasis on PI visualization for the NWS Western Region. Nonetheless, they are designed
to be adaptable for other public-facing hazard communications in other NWS regions as
well as by other government agencies and emergency managers for other hazards requiring
early warning systems to encourage communities to prepare and/or take protective action
(e.g., hurricanes, smoke, heat, and debris flows) (Hatchett et al. 2021; Lambrecht et al.
2021; Oakley et al. 2023; Rosen et al. 2023; VanderMolen et al. 2022).

Why communicate probabilistic forecast information

Though deterministic forecasts remain important to some users and are adequate for some
situations (Carr et al. 2021; National Weather Service 2022b), communicating the full range
of possibilities and their associated uncertainties becomes invaluable when a hazardous
event is forecast (Hirschberg et al. 2011; Joslyn and LeClerc 2012; Miran et al. 2019). When
a deterministic forecast is given, the uncertainty information is omitted, thus obscuring the
complete forecast (National Research Council 2006). A single-valued deterministic forecast
without a measure of uncertainty can be acceptable when the uncertainty in the forecast
is very narrow or the weather will not impact routine operations or require any action
(National Weather Service 2022b,c). For example, if the weather is expected to be 71.6°F
(22°C) with a 10% chance of being 77.0°F (25°C), the addition of PI increases the cognitive
load (the amount of visual information that can be processed mentally) to interpret the fore-
cast with minimal additional benefit. However, it is ultimately up to the forecaster’s judgment
on whether there is a need for PI to be disseminated in certain weather situations based on
their knowledge of their users.

Though deterministic forecasts do not include uncertainty information, research indicates
that people do infer some uncertainty from them (Joslyn and Savelli 2010; Morss et al. 2008,
2010; Savelli and Joslyn 2012; Zabini et al. 2014). However, during high-uncertainty and
high-risk events, deterministic forecasts are problematic (Hirschberg et al. 2011; Todhunter
2011). People often incorrectly estimate the level of uncertainty in deterministic forecasts,
resulting in the perception of too much uncertainty when it is not warranted or not enough
certainty when the forecast is highly uncertain (Fleischhut et al. 2020). Furthermore, when
a hazard is presented in the deterministic forecast but the hazard does not occur, it results in
a false alarm. Continued exposure to false alarms can lead to poor decision-making from the
messaging fatigue effect (“crying wolf”) when people no longer trust the forecast (Breznitz
2013; LeClerc and Joslyn 2015; Oakley et al. 2023). On the other hand, weather resulting
in a greater impact due to an underprediction from the deterministic forecast can be more
costly than false alarms since protective action may not have been taken to reduce losses to
life and property. Balancing the cost—benefit between false alarms and costly misses can
make it difficult to trust a forecast, and trust is a strong predictor of the likelihood of people
taking preparatory action (Losee and Joslyn 2018). Visually communicating PI offers a more
effective way to improve compliance with preventative guidance and decision quality than
efforts to improve deterministic forecast accuracy aimed at reducing false alarms and costly
misses alone (LeClerc and Joslyn 2015).

Research shows Pl is valuable in building trust, increasing confidence and understanding
of the forecast, and improving decision-making (Carr et al. 2021; Grounds and Joslyn 2018;
Howe et al. 2019; Joslyn and LeClerc 2012; Joslyn and Grounds 2015; Joslyn and Demnitz
2019; Morss et al. 2008; Ripberger et al. 2022). Communicating uncertainty demonstrates a
commitment to transparency that increases credibility and trust (Joslyn and LeClerc 2012,
2013; van der Bles et al. 2020). When users trust the forecast they are more motivated to take
preventative action, thereby decreasing the impact of the hazard (Grounds et al. 2017; LeClerc
and Joslyn 2012, 2015; Miran et al. 2019). However, making the forecast is only beneficial if
it motivates action (Murphy 1993).
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Guidelines for visual communication of probabilistic weather information

Through an interdisciplinary review of visual communication research, we identify common
guidelines that improve infographic-style PI visuals. Our review attempts to cover the spectrum
of literature from graphic design to social science as they relate to the visual communication
of public messaging using an infographic format for hazard communication. This spectrum
includes many topics ranging from the visual aesthetic to scientifically proven communication
methods building off of the work done by Ripberger et al. (2022). We focus on six components
of effective visual communication: 1) accessibility, 2) layout, 3) content, 4) color, 5) font, and
6) embellishments to apply to probabilistic weather information (Samara 2020). These key
findings are summarized in a one-page printout (Fig. 1).

Accessibility. Inclusivity through accessibility is an important aspect of communication to
increase the reach of information and improve user experience. Accessibility compliance is
legally required by federal agencies in the United States (U.S. Congress 1973). Making docu-
ments accessible for disabled populations is an important consideration for anyone who cre-
ates or publishes documents; this is especially true for PI visualizations. For example, it is
important to consider color vision deficiencies. Red—green color blindness (protanopia and
deuteranopia) is the most common, occurring in around 8% of males though less frequently
in females (0.5%) (Deeb 2005; Motulsky and Deeb 2001; Sharpe et al. 1999). Beyond color
vision deficiencies, the use of alternative text (“alt text”) promotes inclusivity for people
who are visually impaired or have difficulty seeing images by providing equal access to in-
formation. Alt text ensures individuals using screen readers or assistive technologies can
understand the context and content of images shared on social media platforms (Chiarella
et al. 2020; Huntsman 2022). It is also important to consider neurodivergent characteristics
(dyslexia, ADHD, autism, etc.) (McGee 2012). Between 10% and 15% of the U.S. population
is estimated to have symptoms of dyslexia, and simple design changes can improve read-
ability for some individuals (Eden and Moats 2002; Fletcher et al. 2018).

Accessibility standards help ensure the information and resources are available and
usable for as many people as possible, especially those with disabilities. Since this is an
overarching consideration, we provide specific examples throughout the following sections.
We integrate considerations for colorblind-safe color pallets, design the layout to guide the
viewer’s focus, and select fonts with sufficient contrast between font color and background
to improve readability. Each of these is an important visualization consideration. While alt
text is not a part of the visual communication design, we urge anyone posting images to
social media to include a summary as the alt text when posting the image.

Layout. The term “layout” encompasses the organization and placement of text, color, and
images. Layout influences how readers navigate the visualization by implementing effective
use of 1) hierarchy to highlight the most important message, 2) alignment to create a visual
connection between elements, 3) repetition to build familiarity, and 4) negative space to help
create a sense of simplicity to reduce cognitive load (Poulin 2018; Samara 2020; Tondreau
2019). Reducing cognitive load is especially important for probabilistic weather information,
and arguably even more important for public audiences that may not have the motivation to
look further into the forecast (Palmer 2002). The layout for PI visualizations should respect fa-
miliar design conventions, like titles at the top of the layout with supplemental material at the
bottom, as this reduces cognitive load (Andry et al. 2021; Gordon et al. 2022; Franconeri et al.
2021). This top-down approach is further advantageous as visualizations are read cyclically
between the title, legend, and the data before reasoning (Andry et al. 2021).

Lowering cognitive load is especially helpful for neurodivergent audiences such as
individuals with autism or dyslexia (Eraslan et al. 2020). A simple and effective layout
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technique is to apply a grid system to organize visual content (Ambrose et al. 2019;
Hilligoss and Howard 2002; Poulin 2018; Samara 2020). Within each grid, there should
be sufficient negative (empty) space to frame active spaces and call attention to content
(Hilligoss and Howard 2002; Samara 2020). Color-blocking major grid sections can also be
an effective tool to separate thoughts within the visualizations (Poulin 2018).

Content. PI visuals should include a combination of graphics and writing: graphics pro-
vide the visual overview and the text provides the key details since the ability to un-
derstand graphics alone is related to numeracy levels (having the ability to understand
numbers and do math) (Dallo et al. 2020). Effective visual communication benefits from
content uniformity (Gordon et al. 2022). PI visualizations should include three core com-
ponents: 1) the PI visualization of where and what the weather is forecast to be with
an expression of likelihood, 2) an impact statement, and 3) supplemental material as
we demonstrate in Fig. 2, which is consistent with the findings and work of Bean et al.
(2015), Grounds and Joslyn (2018), Gordon et al. (2022), Kuller et al. (2021), and Sutton
and Kuligowski (2019).

It is beneficial to build on what is familiar, especially if the intended audience has limited
exposure to PI (Fundel et al. 2019). Familiar graphs to populate with PI include axis-aligned
bar charts, data-filled tables, and maps (Andry et al. 2021; Dallo et al. 2020; Franconeri et al.
2021; Fundel et al. 2019). However, less familiar designs like boxplots, which communicate
the full range of scenarios and most likely scenario in a single figure for a location, may
be more useful to communicate PI if properly introduced (European Food Safety Authority
2019; Carr et al. 2021). Therefore, when introducing graphics, we suggest the addition of a
supplemental material section (Fig. 2) to consistently assist existing users gain familiarity
and help new viewers to interpret the visualization. Over time, increased familiarity helps
users interpret the graphic quickly and provides space to seek more information, a common
request from users analyzing PI (Carr et al. 2021; Fundel et al. 2019; Flynn and Lide 2023).

In any PI visualization, it is recommended to provide numerical and verbal expressions
of uncertainty (e.g., 40% moderate chance) and if only one must be selected, numerical ex-
pressions of uncertainty are more effective than verbal expressions in reducing subjective

Title Potential Impacts

Sub-title

o -

Pl Visualization

Fig. 2. Example layout for Pl visualizations following recommended guiding principles with three areas
for key content: 1) the Pl graphic, 2) an impact statement, and 3) supplemental material.
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interpretations (Jenkins et al. 2018, 2019; Joslyn and LeClerc 2012; Lenhardt et al. 2020;
Nadav-Greenberg and Joslyn 2009; Rosen et al. 2021; Windschitl et al. 2017). Finally, the PI
visualization should include a standard impact statement summarizing when the weather
is expected, the potential impacts, and preventative guidance to reduce exposure (Bean
et al. 2015; Gordon et al. 2022; Grounds and Joslyn 2018; Kuller et al. 2021; Sutton and
Kuligowski 2019).

Color. Color is more than a decorative choice. Color is one of the most important and pow-
erful selections in visual communication (Stone et al. 2008). Color attracts attention, con-
veys meaning, and visually organizes information (Stone et al. 2008; van Gorp and Adams
2012). There is a growing consensus regarding the rank order of colors to communicate
impact or hazard: green, yellow, orange, red, and violet (Gordon et al. 2022; National
Weather Service 2022c). Therefore, any color-coded uncertainty should not conflict with
the hazard level since the probability is not necessarily proportional to the impact. If color
is required to communicate uncertainty, the color values should be assigned on a con-
tinuum of lightness, hue, or both, if the data benefits from a diverging pallet (Crameri et al.
2020; Dasgupta et al. 2020; Franconeri et al. 2021; Wong 2010, 2011). It is also best for
the highest saturated hue to communicate the greatest certainty with the lightest hues
representing lower certainty since saturation levels have an effect on cognitive arousal
(van Gorp and Adams 2012; Wilms and Oberfeld 2017). If data are best represented with
multiple hues, they must be visible to those with color vision deficiencies. Red—green
color combinations are the most problematic, but any colors with red or green components
(e.g., brown and green) can make it difficult to decipher (Basak and Roy 2022; Crameri
et al. 2020; Wong 2011). We suggest using red—blue in lieu of red—green and verifying
any color selection with an online color-blindness simulator (e.g., www.color-blindness.
com/coblis-color-blindness-simulator/ or davidmathlogic.com/colorblind/). An example of effective
color mapping of probabilities is the NOAA Climate Prediction Center’s Temperature and
Precipitation Outlooks, which communicate the probability of temperature above normal
or below normal (red to blue) (https://www.cpc.ncep.noaa.gov/).

Weather forecasts and hazard maps are repeat offenders of the misuse of color (e.g., com-
monly applied NWS weather radar, temperature, and wind speed graphics). This is due in
part to the precedence of such color scales in early versions of weather products likely due
to ease of access to flawed color scales (e.g., rainbow) from visualization programs (Borland
and Ii 2007; Dasgupta et al. 2020). Using color scales that vary indiscriminately in hue and
brightness, such as rainbow-type color scales, are well known to poorly represent data and
should be avoided at all costs (Borland and Ii 2007; Crameri et al. 2020; Dasgupta et al. 2020;
Rogowitz and Treinish 1998; Stauffer et al. 2015). Since PI visualizations lie at the intersec-
tion between science and society with a potentially large impact on decision-making, they
should specifically apply effective color use. This includes avoiding red—green color pallets
and rainbow-type color maps (Carr et al. 2021; Morss et al. 2008). In general, it is advised to
use two or three colors and apply a contrasting color sparingly if the graphic needs something
extra to “pop” (Samara 2020).

Font. Fonts frame the tone of what is being communicated. Selecting the proper font creates
trust and confidence as well as improves the overall perception of a visualization’s impact
(Hyndman 2016; Nersesian et al. 2020). When selecting a typeface, readability and leg-
ibility are critical considerations. Sans serif fonts such as Helvetica, Arial, and Verdana are
more effective than serif (embellished) fonts not only for people with dyslexia (Rello and
Baeza-Yates 2013) but all populations (Bernard et al. 2001; Chaparro et al. 2010). Later,
Rello et al. (2016) found an increase in font size above 14 pt, but no larger than 22 pt,
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improves readability. When communicating hazard information, selecting familiar fonts is
especially important since the message needs to be trusted (Hyndman 2016). Familiar sans
serif fonts (without embellishment), such as Helvetica, Arial, and Univers, are preferred
for warning messages and scientific illustrations over serif fonts like Times New Roman,
Garamond, and Courier New (Nersesian et al. 2020; Sattler et al. 1997).

Though most readers can engage with two or three fonts, these should be selected as
an organizational aid to establish hierarchy if needed (Poulin 2017). Variation in contrast
(boldface) and font size also effectively establish hierarchy, indicating where the attention of
the reader should go first, second, and third (i.e., heading, subheading, informational body)
(Poulin 2017). We recommend avoiding italics to improve readability for all populations
(Rello and Baeza-Yates 2013).

Embellishments. Embellishments such as icons, color gradients, shadows, shapes, and
background images (sometimes referred to as “chart junk”) decrease clarity as they are not
essential to understanding the data (Tufte 1997). It is a good practice to remove noncritical
design elements as this reduces the cognitive load requirement that is necessary for more
complex PI visualizations (Franconeri et al. 2021; Sweller 2011; Tufte 1997). However, rele-
vant embellishments can be effective for catching the attention of busy viewers, help readers
distinguish the purpose of the visualization, and anchor the detail in the viewer’s memory
(Andry et al. 2021; Bateman et al. 2010). An effective rule for developing visualizations
is “communicate, don’t decorate” (Samara 2020). For example, the use of snowflakes for
snow-related PI quickly signals the reader what the graphic is about, potentially increasing
engagement (Andry et al. 2021).

Examples

To show what these principles look like in practice, we provide examples of PI visualization
by coupling PI with the previously discussed guiding principles from graphic design and
social science-informed visual communication. Grounding these examples in the NWS
Western Region, which covers Arizona, California, Nevada, Idaho, Montana, Oregon, Utah,
and Washington, we focus on primary weather conditions that pose widespread and local-
ized hazards including snowfall, temperature, wind, and thunderstorms. Each example has
unique probabilistic visualization requirements.

Data and methods. Following the graphic design of weather impact and hazard statements
by Gordon et al. (2022), we developed a template (Heggli et al. 2023; https://doi.org/10.
5281/zenodo.7600486) to facilitate consistent formatting to promote familiarity through
repetition. Repetition indirectly reduces the cognitive load to interpret the data each time it
is provided (Franconeri et al. 2021; Fundel et al. 2019).

Figure 2 employs the best practices identified in the previous section:

e A grid system approach to create three color-blocked sections to distinguish each core
content component: 1) PI visualization, 2) impact statement, and 3) supplemental material
(Ambrose et al. 2019; Hilligoss and Howard 2002; Poulin 2018; Samara 2020).

¢ Gridded layout with color blocking to create a visual connection between elements (Hilligoss
and Howard 2002; Poulin 2018; Ambrose et al. 2019; Samara 2020).

¢ Appropriate negative space to aid in simplicity (Hilligoss and Howard 2002; Samara 2020).

¢ Variation in font size and weight to establish a hierarchy of information (Poulin 2017).

e Arial font (a minimum font size of 14 pt) for readability (Bernard et al. 2001; Chaparro et al.
2010; Nersesian et al. 2020; Rello et al. 2016; Sattler et al. 1997).

¢ Space for communication-driven embellishments to act as topical cues (Samara 2020).
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The template provided is designed with a color theme based on http://www.ColorBrewer.org
(Harrower and Brewer 2003). The deepest single hue color (with five data classes) was used
as the base color option providing five template colors (blue, green, orange, red, and purple)
in addition to standard black and white colors. Each color should be established to represent
one weather parameter to 1) build familiarity of that color to the weather being communi-
cated (Dasgupta et al. 2020) and 2) limit the graphic use to just two or three hues (Samara
2020). We selected a blue template for precipitation/snowfall due to blue being a cool color
and the association with water, green for thunderstorms to build on the familiarity of exist-
ing thunderstorm potential products issued by the NWS Reno Office, orange for wind as a
warmer color often associated with drying vegetation, and the black/white template for ad
hoc weather concerns like a hard freeze (Stone et al. 2008).

The templates were designed to establish content uniformity while providing options and
space to customize the PI visualization for the community. Our approach allows forecast-
ers to “color within the lines,” i.e., to add content that connects with their communities
but is restricted by visual communication guidelines aimed to communicate the message
effectively. The dashed boxes within each section delineate the area reserved for content
and demonstrate the use of negative space (Hilligoss and Howard 2002; Samara 2020). The
icons for the impact statement can be customized; we selected a clock icon to communicate
the “When” section and a light bulb icon for the “What To Do” section. An appropriate icon
should be selected to visually represent the potential impact. Each template uses an informa-
tion icon to cue the supplemental material section where forecasters can provide instructions
to familiarize users with new graphics or provide links to additional resources (Carr et al.
2021). Finally, there is a space for the forecast issue time stamp and a logo.

Our template uses Arial font throughout the entire visualization. The title is 32 pt, the
subtitle is 18 pt, and the other body text is 16 pt with boldface to distinguish the headers. The
minimum font size is 14 pt, used in the forecast date and on some labels given space limita-
tions. These templates assume the platforms have zooming capabilities. All of the graphics
were verified for readability and display with cellphone use.

We used the National Blend of Models (NBM) to extract probabilistic forecast information.
The NBM is a blend of NWS and non-NWS models that creates probabilistic gridded forecast
guidance (Craven et al. 2020; National Weather Service 2022a). Following the recommen-
dation of NWS forecasters, the PI graphics were developed in PowerPoint and Excel since
these tools are readily available in NWS offices. The PI visualization PowerPoint and Excel
templates are available online (Heggli et al. 2023; https://zenodo.org/record/7999820).
Data extracted from the NBM 1D Viewer and WSUP Viewer were used to develop graphics
in Excel. The map is exported directly from GraphiDSS, an internal NWS program, to create
public-facing weather map graphics.

Snowfall. Snowfall does not have a universal impact threshold; a dusting of snow on
cold roads before rush hour may be more impactful than heavy snow on a holiday. For
decision-making, the regional Department of Transportation traction (chain) control thresh-
old is typically different from school districts’ snow-day policies. A range of risk tolerances
likely exists for community members driving in the snow. Some will have more experience
and snow-capable vehicles while others avoid driving if any snow accumulates on roads.
The objective of the snowfall example (Fig. 3) is to communicate a range of potential sce-
narios so users can make a decision based on their personal risk threshold.

A boxplot is a data visualization tool currently used in NWS visual communications to
express a range of possible outcomes with an associated expression of likelihood. Since us-
ers may not be familiar with how boxplots are constructed (Frigge et al. 1989) and because
boxplots can be challenging to correctly interpret (Bakker et al. 2004; Edwards et al. 2017),
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Fig. 3. An example of using a boxplot to communicate a range of possible snowfall scenarios.

we utilize the supplemental material section to teach users how to interpret a boxplot. We
recommend boxplots to present information that needs to communicate the high- and low-end
scenarios for parameters like snowfall or rainfall. Boxplots are not recommended for tem-
perature, as showing a range of potential temperatures can cause deterministic construal
error where a user misinterprets the probabilistic forecast as being deterministic (Joslyn
and Savelli 2021). We also give both numerical and simple verbal expressions of uncertainty
(Nadav-Greenberg and Joslyn 2009; Lenhardt et al. 2020; Rosen et al. 2021). The impact
statement communicates timing, potential impacts, and preventative guidance. To emphasize
the potential for traction control, a car and chain icon illustrates the impact. Last, the state-
ment includes guidance to reduce exposure or impacts by suggesting protective actions. The
blue color theme is a “cool” color often associated with cold and water. Embellishments were
limited to snowflake icons to reinforce the graphic’s focus on snowfall.

Hard freeze. A hard freeze, unlike snowfall, has a defined risk threshold of 28°F (-2°C)
(National Weather Service 2019b). Temperatures dropping below this threshold for multiple
hours present a hazard for ornamental and agricultural vegetation, exposed or poorly insu-
lated water pipes or irrigation systems, and drivers. The example in Fig. 4 demonstrates how
PI can be applied to show the chance of a hard freeze threshold being exceeded.

We selected a familiar axis-aligned bar chart (Andry et al. 2021) and labeled the x axis with
the percent chance of exceeding the threshold to communicate the uncertainty numerically
with an adjacent verbal expression of uncertainty. This chart style could also be employed
to communicate record-breaking or critical thresholds of temperatures, snowfall, or rainfall
totals. The supplemental material section provides information and a link to learn more about
the NBM, a common request from users (Carr et al. 2021; Kuller et al. 2021). It also includes
a sentence to help users understand the numerical information. The impact statement gives
consistently formatted information about when the hard freeze is expected to occur, the
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Very Cold Temperatures Potential Impacts
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The bar plot shows the percent chance of a hard freeze (28 °F or lower) based on
model predictions from the National Blend of Models.

Fig. 4. Example of a horizontal bar chart to communicate the probability of exceeding the hard freeze threshold of 28°C.

potential impacts of a hard freeze with a slippery road icon, and provides preventative guid-
ance to minimize these impacts. A black and white theme was selected as we consider this
type of Pl visualization to be an ad hoc advisory and not a standard event like precipitation,
wind, or thunderstorm that benefits from a consistent color theme. We used a cooler blue tone
to illustrate the chart and a contrasting color embellishment in yellow to attract the viewer’s
attention and communicate that the visualization is about the potential for ice (Samara 2020).
Emojis can have a positive impact on interpersonal communication (Elder 2018) and can be
useful for nonverbal communication (Bai et al. 2019). In this PI visualization, we included
a cold face emoji.

Damaging wind. Similar to a hard freeze, wind speed has a specific hazard threshold for
damaging winds, classified when sustained winds exceed 40 mph (=64 km h™) for at least
1 h or gusts greater than 58 mph for any duration (=93 km h-!) (National Weather Service
2019b). However, wind speed impacts can vary depending on timing and duration. The
wind example aims to communicate the likelihood of damaging winds in different regions
and the expected timing and duration by using a table.

We extracted the exceedance probability of wind gusts greater than 58 mph and color-coded
the probability of damaging winds over a 72-h period. Since color-coded PI can improve the
understanding of likelihood (Ash et al. 2014; Miran et al. 2019), we use a single hue of or-
ange that increases in lightness as the probability of damaging winds decreases (van Gorp
and Adams 2012; Wilms and Oberfeld 2017). The color-coded uncertainty is labeled using
a numerical expression of uncertainty. A legend with color-coded verbal and numerical
expressions is provided (Lenhardt et al. 2020; Nadav-Greenberg and Joslyn 2009). In this
example, we use the supplemental material section to develop weather literacy by explaining
the impact of 58 mph winds and coupling this with a fallen tree icon (Fleischhut et al. 2020).
Embellishments to communicate a warning about wind were included by adding a warning
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icon coupled with a wind icon. A dark theme background was selected to add contrast and
intensity to the orange theme color. A similar design approach could communicate the timing
and probability of precipitation or snowfall.

Thunderstorm. Thunderstorms in the western United States are often isolated and have
different likelihoods of occurring regionally and locally. Thunderstorms produce lightning
hazards for life and property (Holle 2014), wildfire ignitions from dry lightning (Nauslar
and Hatchett 2018), gusty outflow and downdraft winds (Peterson 2000), and localized
rainfall and flooding (Changnon 2001). This example aims to demonstrate how PI can be
communicated spatially with a map to show the probability of occurrence both regionally
and locally.

Since current thunderstorm probability graphics already use a green color scale, we chose
to use green for this example to retain a sense of familiarity while improving accessibility
by having categorical colors rather than a gradient scale. Similar to the damaging wind ex-
ample, we used a single hue that varies in lightness with the uncertainty level (van Gorp and
Adams 2012; Wilms and Oberfeld 2017). The color-coded legend provides both numerical
and verbal expressions of uncertainty. If terms such as “slight,” “moderate,” or “high” are
used in PI communications as expressions of uncertainty, but do not correspond to the Storm
Prediction Center’s (SPC; https://www.spc.noaa.gov/) Severe Thunderstorm Outlook Categories
or other products, it is necessary to explicitly define these terms (i.e., “high chances”) and
provide the quantitative ranges associated with them (50%-75%) to avoid any confusion with
SPC products or definitions. For forecast maps with areas of less than low chances (i.e.,
0%-10%), we recommend defining the base map color in the legend if a monochromic color
is used to avoid potential confusion about an undefined color on the map. We leverage the
supplemental material section to clarify that this graphic only provides the probability of a
thunderstorm occurring “over your head” but regionally the chances of seeing a thunderstorm
is typically higher. In this impact statement, we issue the standard information to commu-
nicate when, the possible impacts, and preventative guidance if a thunderstorm does occur.
To make the graphic “pop” we selected a dark background with a green theme using thun-
derstorm and wind icons with a bright green outline to improve the aesthetic (Samara 2020).

Discussion

Building a Weather-Ready Nation benefits from a customer-centric approach to forecasting for
core partners and general audiences that does not sacrifice the scientific accuracy of a prod-
uct (Uccellini and Ten Hoeve 2019). To support a customer-centric approach, we provided
an adaptable tool with a “plug-and-play” approach by developing Excel and PowerPoint
templates (Heggli et al. 2023; https://doi.org/10.5281/zenodo.7600486) through an itera-
tive design process with NWS forecasters. These templates incorporate guiding principles
based on a review of graphic design and social science literature as a step toward produc-
ing more effective and accessible PI visualizations. We designed these templates to facilitate
consistent messaging between NWS offices and to reduce the time required to develop PI
visualizations. Reducing time investments could allow forecasters to focus time on creating
multiple visualizations targeted at individual regions within their forecast area of responsi-
bility. Many NWS forecast offices have found daily weather briefing packages to be effective
tools for providing context about upcoming weather events to core partners (Carr et al. 2021).
However, social media remains a common place for NWS offices to disseminate forecast infor-
mation (National Weather Service 2017). Carefully designed visual explanations will likely
improve regional weather literacy among both core partners and public audiences. This will
help users leverage the power of probabilistic weather forecasts to improve decision-making
(Fleischhut et al. 2020; Fundel et al. 2019).
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Successful efforts to visualize probabilistic weather information have focused on the
probability of precipitation (PoP) (Lowry and Glahn 1976), hurricane forecasts (Broad et al.
2007; Rosen et al. 2021), and severe weather (Rothfusz et al. 2014). Currently, other efforts
are being carried out across the NWS with the Central Region Probabilistic Messaging
Testbed (Schumacher et al. 2021, 2022), High-Resolution Ensemble Forecast system (HREF)
for thunderstorm guidance (Harrison et al. 2022), and probabilistic hazard information
and decision support services for winter storms (Novak et al. 2023; Tripp et al. 2023).
Continued engagement and co-production are critical to improving the utility of PI tools
through transparency and communication, which further develops trust between forecasters,
core partners, and the general public (Carr et al. 2021; Fundel et al. 2019; Pappenberger
etal. 2012; Sivle et al. 2014). However, it is important to reiterate that the numerous benefits
associated with PI hinge on the visuals being well designed (Franconeri et al. 2021; Padilla
et al. 2021). Layout, color selection, font, and embellishments are more than a decorative
choice with PI visualization as they impact the users’ ability to efficiently and accurately
extract information.

There are limitations associated with the use of PI that can be counterproductive, but
identifying these limitations can lead to solutions that can improve user understanding.
Unfamiliar visualizations can cause deterministic construal error when users do not under-
stand forecast information is probabilistic, so the visualization must expressly communicate
that the information is probabilistic. (Fleischhut et al. 2020; Grounds et al. 2017; Joslyn and
LeClerc 2013; Joslyn and Savelli 2021; Savelli and Joslyn 2013). To reduce the chances of deter-
ministic construal error, we attempt to cue the users to the presence of uncertain information
by using words like “could,” “chance,” and “probability” as well as expressing the impact
statement as “potential impacts.” PI can also lead to biased or subjective decision-making
(Wernstedt et al. 2018). However, bias in decision-making is hard to quantify as it relates to
people’s past experiences, predisposition to certainty, and avoiding loss (Grounds and Joslyn
2018). Even when considering the limitations, probabilistic forecasts are generally considered
to be better than deterministic forecasts because they provide a more accurate and realistic
representation of uncertainty, and can help to reduce the risk of overconfidence and bias
(Ripberger et al. 2022). Our work attempts to address these limitations by encouraging con-
sistent messaging, transparency of information, and familiarity with PI.

In parallel with ongoing development of technical products (Harrison et al. 2022; Novak
et al. 2023; Schumacher et al. 2021; Tripp et al. 2023), the communication and perception
of these products by users should be systematically examined (Dallo et al. 2020; Lambrecht
et al. 2019). While our visualization examples were developed collaboratively with NWS
forecasters, further research should analyze the impact and perception of probabilistic visu-
alizations more broadly with emergency managers and the general public across a diversity
of environments, demographics, and hazards.

Summary

PI can improve credibility, strengthen understanding of the forecast, support decision-making,
and help build trust by enabling targeted messaging and demonstrating a commitment to
transparency by communicating forecast uncertainty (Grounds and Joslyn 2018; Joslyn and
LeClerc 2012; Morss et al. 2008; National Weather Service 2022b; Ripberger et al. 2022). Our
work leverages social science and graphic communication literature to develop a ready-to-
use template (Heggli et al. 2023) aimed at improving the usability and comprehension of
probabilistic forecast information. The templates provide a “plug-and-play” tool to develop
PI visualizations to reduce the forecaster’s time, increase consistency, and ensure design
principles are followed when developing graphics. While these templates were designed
focused on advancing the NWS with improved PI visualizations, the principles can be
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Fig. 5. Example using a table to communicate timing and probability of damaging winds.

applied to other weather information graphic designs. The value of PI is not that it provides
the decision. Rather, PI provides information useful for the binary decision-making process
for user-specific thresholds (Pappenberger et al. 2012). PI can inform any weather-related
decision, but single-value deterministic information with no expression of uncertainty leaves
decision-makers less well equipped to make the best possible decision(s). The continued
integration and improved visual communication of PI into NWS forecasts will help NOAA
reach its goal: to continuously transform weather, water, and climate information service
delivery to better support evolving societal needs (National Oceanic and Atmospheric
Administration 2022).
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required, a lighter green can be used. For areas of no chances (0%) we recommend defining the base map color in the legend if
a monochromic base map is used.

Probabilistic information to advance Impact-Based Decision
Support Systems

We define probabilistic information (PI) as messaging that conveys the likelihood of one or more specific
outcomes. Therefore, probabilistic weather information includes the forecast scenario and the associated
uncertainty. Pl is developed with an ensemble forecast, defined as “a set of different forecasts all valid at
the same forecast time(s)” (American Meteorological Society 2020). From there, forecasters may adjust
the model-derived probabilistic information based on external information and/or experience (i.e., local
knowledge).

While it is not always necessary to communicate multiple scenarios, in certain situations, it may be impera-
tive to communicate the full range of possible scenarios with the associated uncertainties so decision-makers
can prepare accordingly. For example, precipitation falling as either rain or snow benefits from communicat-
ing the wet and dry scenarios to inform people about 1) the potential worst-case scenario, 2) the most likely
scenario, and 3) the likelihood of the worst-case scenario.

To create an effective Pl visualization, it is important to communicate the potential impact as a way to
build weather literacy since people cannot easily infer the impact from a weather forecast alone (Fleischhut
etal. 2020; WMO 2015). For example, Fleischhut et al. (2020) found people overestimate severe wind speeds
that cause damage. Therefore, communicating what the weather “can do” (uproot trees and knock down
power lines) versus what it “would be” (56 mph/90km h-") can improve weather literacy needed to under-
stand weather impacts. In this way, Pl can be coupled with hazard or individual risk thresholds with their
associated potential impacts to create Impact-Based Decision Support.

When Pl is used for a specific hazard threshold, Pl evolves into probabilistic hazard information (PHI),
but there are many benefits of communicating probabilistic weather information when there is little to no
hazard present. Creating more opportunities for core partners to access and learn how to use Pl helps build
familiarity with Pl so when PHI is disseminated, partners will be familiar with the products and it could help
them extract uncertainty information for their decision threshold and associated risk tolerance.
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